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The phonon spectrum of �-uranium has been measured by Manley et al. in a series of experiments using
inelastic neutron and x-ray scattering. The 2001 results showed that the optic modes soften by a few millielec-
tron volts as the temperature is increased between room temperature and 450 K. In 2006, a new dynamical
mode was observed to form above 450 K which the authors attribute to an intrinsically localized mode, which
is stabilized by anharmonic interactions. We propose a possible alternate cause for the formation of the mode
and the softening which is based on the existence of strong electron-phonon interaction together with a low
excitation energy for transitions between states with f and conduction-electron characters. The model allows
for a resonant interaction between the optic phonons and the electronic excitations, which may lead to the
high-energy peaks in the phonon spectra splitting and acquiring mixed electronic and phonon characters.
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I. INTRODUCTION

Uranium shows indisputable evidence for very strong
electron-phonon coupling1 which is responsible for the ma-
terial undergoing three structural transformations at low tem-
peratures. The room-temperature phonon-dispersion relations
inferred from inelastic neutron-scattering experiments2 show
the existence of a large Kohn anomaly near q= �0.5,0 ,0� in
reciprocal-lattice units. The anomaly has its origin in a weak
singularity in the dielectric constant at q=2kF.3 Although this
singularity is extremely weak for isotropic three-dimensional
materials, it can be large for systems in which the electronic
dispersion relations are extremely anisotropic. From neutron-
diffraction data it was found4,5 that on decreasing tempera-
ture new inelastic Bragg peaks first occurred for tempera-
tures below 46 K at points near � 1

2 ,0 ,0� which are not
commensurate with the �-phase lattice. Also additional
peaks were observed at large wave vectors. Yamada6 pro-
posed a quasi-one-dimensional theory in which the instabil-
ity occurs due to Fermi-surface nesting at a wave vector
directed along the �1,0,0� axis, and that the extra peaks were
consequences of strains induced by domain-wall boundaries.
However, it was subsequently found using high-resolution
neutron scattering7 that phonon softening occurred at the ex-
act �temperature-dependent� charge-density wave vectors
Qc�T� off the �1,0,0� axis, and that the square of the soft-
mode frequency exhibited a linear variation in T−Tc as ex-
pected from the mean-field version of Landau-Ginzberg
Theory. The wave vectors Qc were found to be in perfect
agreement with the nesting wave vectors of a fully three-
dimensional Fermi surface calculated by Fast et al.8 First-
principles calculations of the phonon spectrum by Bouchet9

show that the �4 mode shows a significant Kohn anomaly at
� 1

2 ,0 ,0�. The shift of the phonon frequency can be expressed
in terms of a product involving the electron-phonon interac-
tion and the linear-response function for electronic excita-
tions. The magnitude of the shift is surprisingly large since
only a relatively small portion of the Brillouin zone shows
nesting8 and, furthermore, even in these small regions there
is about a 5% variation in the nesting vector. Therefore, the
Lindhardt function is not expected to show the ln�qx−Qc�

divergence expected from perfectly parallel sheets of the
Fermi surface but also, at finite values of �qx−Qc�, is ex-
pected to have a magnitude much smaller than the value of
the corresponding one-dimensional function. These findings
not only suggest that the lattice instability due to the phonon
softening can be thought as a Kohn anomaly produced by the
electron-phonon interaction and provides a direct measure of
the Fermi-surface nesting10 but also that the electron-phonon
interaction is quite strong.

The thermodynamic properties of �-uranium are also
anomalous. The lattice constant shows an unusually large
temperature dependence that persists up to room
temperatures.11 Likewise, the magnetic susceptibility, which
has been designated as being Pauli paramagnetic,12 shows an
increase with increasing temperature. Taken together, the
thermodynamics suggests that there is a low-energy scale for
electronic excitations which results in a decrease in bonding
and an increase in the magnetic character at elevated tem-
peratures. Therefore, studies of the high-temperature proper-
ties could be expected to reveal distinct physics.

The dispersion relation has also been measured at high
temperatures �T�450 K� by inelastic neutron and x-ray
scattering experiments.13,14 These experiments showed that
the optic phonon density of states measured by incoherent
inelastic neutron scattering softened by about 4 meV as the
temperature was raised from room temperature to 433 K.
More surprisingly, further experiments revealed the forma-
tion of a dynamical mode with a nontrivial temperature-
dependent width.15 The new mode was observed at 14 meV
near the zone boundary at the low-symmetry point �0,1,0.2�,
where the pre-existing phonon mode at 11 meV was ob-
served to soften. Further experiments16 have shown that the
anomalous mode occurs at a number of low-symmetry points
which are related by an approximate hexagonal symmetry of
the Brillouin zone. Since the system does not show signs of
a structural instability in the temperature range where the
new mode forms, the occurrence of the new mode has been
heralded as representing a breakdown of harmonic phonon
theory, which would predict six phonon modes for a mono-
clinic lattice with two basis atoms. �The lattice is normally
refereed to as orthorhombic with four atoms in the unit cell�.
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The experimental group attributed the appearance of the
new mode to the existence of a thermally activated popula-
tion of intrinsically localized modes. Loosely speaking, in-
trinsically localized modes are oscillatory vibrational modes
in which the anharmonic interactions restrict the excitations
to occur over finite regions of space and which prevent the
excitations from dispersing as time evolves. Evidence for
such nonlinear excitations were first found by Fermi et al.17

in computer simulations of the vibrational motion of a 33-
atom chain in which anharmonic interactions were present.
The continuum limit of the Fermi-Pasta-Ulam problem was
identified as being governed by the Korteweg-de Vries
equation18 which was shown by Gardner et al.19 to have
soliton solutions. Further progress was made by Toda,20 who
found nonlinear excitations in discrete one-dimensional lat-
tices. Flach21 showed that localized large-amplitude vibra-
tional modes can be considered as quantized bound states of
extended small-amplitude waves. Most of the earlier work
has been restricted to low-dimensional systems due to Der-
rick’s theorem which predicts that solitonlike modes would
become unstable in higher dimensions.22 Although exact
soliton and breather solutions occur frequently for low-
dimensional nonlinear systems,23,24 it has proved to be noto-
riously difficult to obtain mathematically exact soliton solu-
tions for higher dimensional nonlinear theories. However, the
theorem is based on idealized mathematical assumptions and
does not preclude the existence of metastable nonlinear lo-
calized modes. Hence, as Manley et al.15 argue, intrinsically
localized modes might exist in higher dimensions due to “hot
spots” and also in discrete lattices which have relatively low
point-group symmetries such as �-uranium. The experimen-
tal work on �-uranium was followed up by inelastic neutron-
scattering experiments on NaI,25 which showed features con-
sistent with the intrinsically localized modes predicted by
classical molecular-dynamics simulations.26 A thorough dis-
cussion of the appearance of intrinsically localized modes in
three-dimensional materials, including their effects on the
mechanical properties, is given in a recent article by
Manley.27

At ambient conditions, the electronic structure of
�-uranium is reasonably well described by density-
functional theory28,29 which is in qualitative agreement with
photoemission30 and de Haas-van Alphen experiments.31

However, local-density approximation �LDA� does require
some corrections1 due to moderate correlations given by a
GW treatment.32 As pointed out by Hjelm et al.33 and also by
Stojic et al.,34 a modest increase in the unit-cell volume
makes �-uranium comparable to plutonium. For the ex-
panded lattice, LDA predicts �-uranium to be magnetic.
Likewise, LDA predicts plutonium to be magnetic.35,36 How-
ever, experiments on plutonium have shown that it does not
possess a spontaneous magnetic moment,37 which is prob-
ably due to a partial cancellation between the spin and orbital
moments38 and also due to valence fluctuations.39 Anomalies
in the phonon spectrum of plutonium were predicted on the
basis of the coupling to low-energy electronic excitations
within the dynamical mean-field theory40 and have subse-
quently been observed by inelastic x-ray scattering.41 The
properties of the actinide materials, including uranium and
plutonium have recently been reviewed buy Moore and van

der Laan.42 Since the �-uranium lattice expands significantly
as the temperature increases, one could expect that the mod-
erate many-body effects predicted near T=0 should become
significantly stronger at temperatures on the order of 450 K.
The anomalous phonon spectrum of plutonium motivates the
investigation of whether the phonon anomalies observed in
the high temperature expanded lattice of �-uranium could
also be due to coupling with low-energy electronic excita-
tions. In the next section, we shall present a model for the
phonon softening which involves strong electron-phonon
coupling and low-energy valence fluctuations.43,44 In the fol-
lowing section the phonon spectrum will be calculated and
then the paper will conclude with a discussion of the results
and a comparison with the experimental data.

II. MODEL HAMILTONIAN

The model Hamiltonian is based on the noninteracting
Anderson lattice model which describes hybridized 5f bands
and the conduction bands. The harmonic phonons are
coupled to the f electronic system via an electron-phonon
interaction. The model was originally introduced by Sher-
rington et al.45,46 to describe the dynamics of isostructural
valence transitions in SmS, where the transition is marked by
a discontinuous change in volume caused by the differences
in the ionic radii of the Sm ions. The total Hamiltonian is
written as

Ĥ = �
i,�

Ef fi�
† f i� + �

k� ,�
�k�dk��

† dk�� + �
k� ,�

�Vk� fk��
† dk�� + Vk�

�dk��
† fk���

+ �
q� ,�

��q��aq��
† aq�� + �

k� ,�,q� ,�
�q���aq��

† + a−q���fk�+q��
† fk��. �1�

The first term represents the binding energy Ef of the local-
ized f states at the lattice sites labeled by the index i. Here
the operators f i�

† and f i�, respectively, create and annihilate
an f electron of spin � in the orbital located at site i. The
second term represents the energy �k� of the conduction-band
Bloch states, labeled by the Bloch wave vector k, and dk��

†

and dk��, respectively, create and annihilate a conduction elec-
tron of spin � in the kth Bloch state. The third term repre-
sents the hybridization between the localized f electron states
and the conduction-band states. The fourth term represents
the energy ��q� ,� of a phonon with wave vector q� and polar-
ization � in which aq� ,�

† and aq� ,� are, respectively, the phonon

creation and annihilation operators. The last term represents
the interaction between the f electron and the phonons. The
order of magnitude of the f electron-phonon coupling
strength �q� ,� for longitudinal-acoustic phonons is approxi-
mated by47

�q�
= i�q� . ��q�

�� 4	Z�e2


c�q2 + qTF
2 ��	 �

2M�q�

, �2�

where ��q�
is the polarization vector, Z� is the charge on the

uranium ions �Z�=3�, M the nuclear mass �M =238mp�, 
c is
the volume of the unit cell �
c=83.2�10−30 m3 for the con-
ventional orthorhombic unit cell�, and qTF is the Thomas-
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Fermi wave vector. The corresponding expression for the
longitudinal-acoustic phonon frequency is given by

�q
2 =

16	Z�
2e2

M
c

 q2

q2 + qTF
2 � . �3�

This results in the energy of the longitudinal phonon at q�
= �0,0 ,	 /c� to be approximately 18 meV. Although the
longitudinal-acoustic and transverse-optic modes do mix
slightly yielding a pair of �1 modes, the experimentally de-
termined zone-boundary phonon with an energy of approxi-
mately 12 meV does correspond to a longitudinal-acoustic
mode. The magnitude of the electron-phonon interaction cor-
responding to the zone-boundary longitudinal-acoustic mode
is found to be approximately 110 meV. A similarly large
estimate of the electron-phonon interaction ��47 meV� can
be inferred from consideration of the contraction of the
Wigner-Seitz radius along the actinide series, as for example,
shown in the paper by Lashley et al.37 These large values
could also be anticipated from analysis of the low-
temperature phonon softening which gives rise to structural
instabilities. In our analysis, we shall find it necessary to use
electron-phonon interactions which have magnitudes that are
similar to the phonon energies. The conduction-band width
W found from the calculations of Chantis et al.32 is estimated
to be on the order of 6 eV. The Fermi energy is assumed to
lie close to the position of the peak in the density of states of
the upper hybridized band. A value of the hybridization ma-
trix element V of about 1/3 eV would be required to obtain
reasonable agreement with the density of states at the Fermi
energy found from the electronic-structure calculations.

In the limit where the electrons are noninteracting, i.e.,
�q� ,�=0, the electronic structure decouples from the phonons.

The electronic part of the noninteracting Hamiltonian Ĥ0 is
given by

Ĥ0 = �
k� ,�

�Ef fk��
† fk�� + �k�dk��

† dk�� + Vk� fk��
† di� + Vk�

�dk��
† fk��� , �4�

which is diagonal in the Bloch index. The phase of the hy-
bridization matrix elements can be gaged away by absorbing
the phase in either the d or f electron operators. The nonin-
teracting Hamiltonian can then be diagonalized by introduc-
ing a pair of new fermionic operators �k� ,k�, via the canoni-
cal transformation

�k�� = fk�� cos �k� + dk�� sin �k� ,

k�� = − fk�� sin �k� + dk�� cos �k� , �5�

where �k� is still to be determined. Since the transformation
is canonical, the new fermion operators satisfy the anticom-
mutation relations,

��k��,�k����
† + = �k�k����,��,

�k��,k����
† + = �k�k������,

��k��,k����
† + = 0. �6�

For the choice of �k� given by

cos 2�k� =
Ef − �k�

	�Ef − �k��2 + 4Vk
2

,

sin 2�k� =
2Vk

	�Ef − �k��2 + 4Vk
2

, �7�

the terms in the Hamiltonian which are bilinear in the fer-
mion operators � and  vanish. For this choice, the nonin-
teracting electronic Hamiltonian has the diagonal form

Ĥ0 = �
k� ,�

Ef + �k�

2
+	
Ef − �k�

2
�2

+ Vk
2��k��

† �k��

+ �
k� ,�

Ef + �k�

2
−	
Ef − �k�

2
�2

+ Vk
2�k��

† k��. �8�

The electronic dispersion relations are shown in Fig. 1. We
note that the spectrum exhibits a direct gap between the pair
of hybridized bands of 2 V and an indirect gap given by �

= 4V2

W , where W is the conduction-band width.

The electron-phonon interaction Hamiltonian Ĥ1 can be
rewritten in terms of the hybridized states as

Ĥ1 =
1

	N
�

k� ,q� ,�,�
�q� ,��aq��

† + a−q�����k��
† �k�−q�� cos �k� cos �k�−q�

+ k��
† k�−q�� sin �k� sin �k�−q�

− �k��
† k�−q�� cos �k� sin �k�−q�

− k��
† �k�−q�� sin �k�−q�

cos �k�� , �9�

where the coherence factors project onto the f states. In the
next section, the phonon spectrum will be calculated using a
perturbation expansion in the electron-phonon interaction.

III. PHONON SPECTRA

In the absence of interactions, the phonon propagator
Dq�

0 ��� is diagonal in the polarization indices � is given by

-4

-3

-2

-1

0

1

2

3

4

-1 -0.5 0 0.5 1

E/t

ka/

E k

E k

Ef

FIG. 1. �Color online� A sketch of the dispersion relations for
the hybridized electronic bands.
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Dq�
0 ��� =

2��q��

�2�2 − �2�q��
2 . �10�

The propagator for the interacting phonons Dq�
��� can be

expressed in terms of the noninteracting propagator and the
irreducible polarization part, �q�

���, via Dyson’s equation

Dq�
��� = Dq�

0��� + Dq�
0����q�

���Dq�
��� . �11�

To lowest order in the electron-phonon interaction, the irre-
ducible polarization part is given by

�q�
��� =

�

N
�
k� ,�
� d��

2	i
��q� ,��2Gk�+q� ,f

0 ��� + ��Gk� ,f
0 ���� ,

�12�

where Gk� ,f
0 ��� is the noninteracting single-particle f-electron

Green’s function. On evaluating the integrations, one obtains
the real part of the polarization part as

Re �q�
��� =

2�q,�
2

N
�

k�
� �fk�

� − fk�+q�
� �cos2 �k� cos2 �k�+q�

�� + Ek�
� − Ek�+q�

�

+
�fk�

 − fk�+q�
 �sin2 �k� sin2 �k�+q�

�� + Ek�
 − Ek�+q�



+
�fk�

 − fk�+q�
� �sin2 �k� cos2 �k�+q�

�� + Ek�
 − Ek�+q�

�

+
�fk�

� − fk�+q�
 �cos2 �k� sin2 �k�+q�

�� + Ek�
� − Ek�+q�

 � , �13�

where fk
� is the Fermi-Dirac distribution function for the kth

Bloch state of the � hybridized electronic band. The imagi-
nary part of the polarization part is given by

Im �q�
�� + i�� = −

2	�q,�
2

N
�

k�

����� + Ek�
� − Ek�+q�

� ��fk�
�

− fk�+q�
� �cos2 �k� cos2 �k�+q�

+ ���� + Ek�


− Ek�+q�
 ��fk�

 − fk�+q�
 �sin2 �k� sin2 �k�+q�

+ ����

+ Ek�
 − Ek�+q�

� ��fk�
 − fk�+q�

� �sin2 �k� cos2 �k�+q�

+ ���� + Ek�
� − Ek�+q�

 ��fk�
�

− fk�+q�
 �cos2 �k� sin2 �k�+q�

� . �14�

The real part and imaginary part are connected by the
Kramers-Krönig relations

Re �q�
��� =

1

	
�

−�

+�

d��
Im �q�

��� + i��

�� − �
�15�

and

Im �q�
�� + i�� = −

Pr

	
�

−�

+�

d��
Re �q�

����

�� − � − i�
, �16�

which expresses causality. The polarization part satisfies
symmetry relations. In particular, due to time-reversal invari-
ance, the real part is an even function of � and imaginary
part is an odd function of �.

To lowest order in the electron-phonon interaction, the
renormalized phonon and decay rates frequencies are deter-
mined by the complex poles of the approximate phonon
propagator

Dq�
��� =

2��q�

�2�2 − �2�q�
2 − 2��q�

�q�
���

, �17�

which omits the couplings between the various phonon
modes. This yields the equation

�2�2 − �2�q�
2 − 2��q�

�q�
��� = 0, �18�

which is to be solved graphically. The real parts of the pho-
non frequencies are approximately given by the intersection
of the curves �2−�q�

2 and 2�q�
Re �q�

���, and the phonon
decay rates are given by Im �q�

��+ i�� at the intersection.
The form of the frequency-dependent polarization part is

shown in Fig. 2 for the values of q� = �0,0 ,0� and q�
= �	 ,	 ,	�. For these particular q values, the intraband scat-
tering processes do not contribute to the polarization part in
the energy range of interest. The low-energy intraband con-
tributions are restricted to a range of small but finite q and
give rise to the structures seen in Fig. 3. The intraband con-
tributions are unlikely to yield phonon anomalies since one
expects that Fermi velocity will be much greater than the
speed of sound, so the Born-Oppenheimer approximation ap-
plies. For q� = �0,0 ,0� the intraband contributions to the po-
larization part vanish identically when ��0 and the polar-
ization part, shown in the left panel of Fig. 2, is dominated
by the interband contributions. The interband processes ex-
hibits a sharp peak at the threshold energy of 2V which cor-
responds to the direct gap. Since 2V is much larger than the
phonon energy scale, the renormalizations of the phonon fre-
quencies are expected to be minimal at q� = �0,0 ,0�. On the
other hand, for q� = �	 ,	 ,	� the threshold for the interband
excitations will be on the order of the much smaller indirect-
gap energy �=4V2 /W, as can be seen in the right panel of
Fig. 2.

When the threshold for interband excitations is greater
than the bare phonon frequency, the polarization part has the
effect of reducing the phonon frequency. The softening in-
creases when the separation between the bare phonon fre-
quency and the indirect gap is reduced. When the threshold
energy is comparable to the optic phonon frequency, then the
low-energy electronic excitations can resonate with the optic
phonons leading to the formation of modes of mixed elec-
tronic and phononic character. In particular, for phonons with
bare frequencies slightly above the interband threshold, the
phonon spectral density may show two features: a narrow
feature with energies below the threshold and a broader
structure located above the threshold but below the bare pho-
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non frequency which represents the resonance. The graphical
solution and the phonon spectral density are shown in Fig. 4.
The �-integrated intensity of the lower mode is given by the
expression

�1 −
�

���
�q�

����−1

, �19�

which should be reduced below unity. The intrinsic width of
the mode due to anharmonic interactions �not considered
here� should be reduced by the same factor. The two solu-
tions may be designated as breathing modes which involve
the phonons coupling coherently with f-d charge fluctuations
and the concomitant change in ionic radii. The model shows
that this resonance should only occur for the higher fre-
quency optic modes, and then only for a limited range of
large q values for which the threshold energy for interband
electronic excitations is reduced below the bare phonon fre-
quency. This finding is qualitatively in agreement with the
experimentally results of Manley et al.15 which show that the

new mode is found predominantly near the Y point at the
Brillouin-zone boundary. If the phonon frequency is further
increased above the electronic threshold, the high-energy
resonance may eventually turn into a bound state. For further
increases in the phonon frequency, the lower mode may rap-
idly lose intensity and merge with the continuum. In such
cases, the lower mode has an energy � below the indirect-
gap energy � which is approximately given by

�� � �
1 − exp�−
���2�q

2 − �2�
�q

2��q
�� �20�

and the �-integrated intensity should show an exponential
fall off. On further increase in the phonon frequency or
weakening of the electron-phonon interaction, the lower
mode may have a protracted existence as a narrow resonance
as seen in Fig. 5.

IV. DISCUSSION

The major assumption of the above analysis is that there
exist low-energy electronic excitations which have energies
comparable to those of the optic phonon modes. Since
the electronic energy scales derived from first-principles
calculations32 at ambient conditions are about a factor of 10
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FIG. 2. �Color online� The upper panel shows the frequency
dependence of the polarization part for q= �0,0 ,0�. The real part is
symmetric in frequency �solid blue line� and imaginary part is odd
�dashed red line�. The polarization part shows structure at the en-
ergy of the direct gap 2V. The lower panel shows the corresponding
polarization part for q= �	 ,	 ,	�. The polarization part shows struc-
ture at the threshold for interband transitions. This threshold is re-
lated to the indirect gap �. The slight shift is caused by the chemi-
cal potential � which is positioned at an energy of 6 meV in the
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larger than those required for the formation of the breathing
mode, the postulated reduction requires a many-body expla-
nation. One possibility is that the reduction in scale is due to
the Kondo effect or low-energy valence fluctuations39 as has
been used40 to predict the experimentally determined phonon
anomalies in plutonium.41 A second possibility, namely, that
the reduction is due to a polaronic effect is outlined below.

The first occurrence of the split phonon modes at high
temperatures can be understood if one assumes that the hy-
bridization energy is subject to a polaronic reduction. This
can be achieved by using a canonical transformation which

is a variant of the Lee-Low-Pines transformation48 and is
given by

Û = exp�−
1

	N
�

q� ,j,�,�

�q� ,�

��q� ,�
�aq� ,�

† − a−q� ,��f j,�
† f j,� exp�iq� · R� j�� .

�21�

Applying the transformation to the parts of the Hamiltonian
which couple to the phonons, one can eliminate the electron-
phonon interaction since
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FIG. 4. �Color online� The upper panel shows the graphical
solution for the renormalized phonon frequency. The renormalized
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�solid blue line� with the parabola �2−�q

2 �dashed black line�. The
plot shows that the renormalized phonon frequency exhibits a sig-
nificant softening when the bare frequency is comparable to the
threshold energy �. The lower panel shows the phonon spectral
density. It shows the softened phonon line at lower frequencies and
the formation of resonance mode of mixed electron and phonon
character at higher frequencies. A constant has been added to the
phonon linewidths to simulate the contributions from anharmonic
processes.
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FIG. 5. �Color online� The upper panel shows the graphical
solution for the renormalized phonon frequency. This figure differs
from Fig. 5 in that the value of the bare phonon frequency has been
increased slightly. The renormalized phonon frequency is given by
the intersection of the line 2�q�q��� �solid blue line� with the
parabola �2−�q

2 �dashed black line�. The plot shows that although
the renormalized phonon frequency lies above the threshold energy
�, the separation of the curves still shows a local minimum near �
which may allow the lower frequency mode to exist as a resonance.
The lower panel shows the phonon spectral density. It shows that in
this case, a narrow resonance exists near the threshold energy. A
constant has been added to the phonon linewidths to simulate the
contributions from anharmonic processes.
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Ĥph� = Û†��
q��

��q��aq��
† aq�� +

1
	N

�
q� ,k��

�q���aq��
† + a−q���fk�

†fk�−q��Û

=�
q� ,�

��q��aq��
† aq�� −

1

N
�

q� ,k� ,k��

�q��
2

��q��

fk�−q�
† fk� fk��+q�

† fk��. �22�

Thus, the Hamiltonian is diagonal in the limit V→0 in which
case, the linear electron-phonon coupling is removed but in
the process, produces a Frank-Condon shift of the f level and
also produces an oscillatory long-ranged interaction between
the f electrons.45,46 The canonical transformation has the ef-
fect of producing a dynamic renormalization of the hybrid-
ization term to yield

HV� = �
j,k� ,�
�V exp�ik� · R� j�f j,�

† dk� ,� exp�−
1

	N
�
q� ,�

�q� ,�

��q� ,�
�aq� ,�

†

− a−q� ,��exp�iq� · R� j�� + H.c.� . �23�

If this is replaced by the thermal average, as in the
Gutzwiller approximate treatment of electronic correlations,
one recovers a polaronic reduction in the effective hybridiza-
tion interaction of the form

V → Ṽ = V exp�−
1

2N
�
q� ,�

 �q� ,�

��q� ,�
�2

�1 + 2N��q� ,���� .

�24�

Diagrammatically, this corresponds to the simultaneous
emission and absorption of an indefinite number of phonons
at the hybridization vertex, as indicated by the infinite series
depicted in Fig. 6. The temperature dependence of the renor-

malized hybridization matrix element is similar to that found
in Holstein’s treatment of the small polaron.49 It is hypoth-
esized that the temperature-dependent renormalization of the
hybridization matrix element, and the concomitant reduction
in the indirect hybridization gap, is responsible for the oc-
currence of the breathing mode at high temperatures. This
polaronic renormalization only occurs for the low-energy f
quasiparticles. The higher energy excitations are unrenormal-
ized, as is indicated below. For moderately large polaronic
reductions, one might expect that the f-electron self-energy

could be calculated to leading orders in Ṽ2, and that the
dynamic part of the hybridization might also be expanded in
powers of �

�q� ,�

��q��
�2. To lowest nontrivial order in the effective

hybridization, the self-energy for the fermionic part of the
transformed f electron Green’s function can be expanded in
powers of the dynamic electron-phonon coupling as depicted
in Fig. 7. This yields the expression

� f�k� ,�� � �Ṽ�2� 1

�� − �k� + �

+
1

N
�
q� ,�

 �q� ,�

��q� ,�
�2� 1 + N��q� ,�� − fk�−q�

�� − �k�−q�
+ � − ��q� ,�

+
N��q� ,�� + fk�−q�

�� − �k�−q�
+ � + ��q� ,�

� + ¯� . �25�

f f
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f f
d

f f
d

f f
d

FIG. 6. �Color online� The series of simultaneous emission and
absorption of phonons at a hybridization vertex which leads to a
polaronic reduction in the hybridization matrix element. The solid
blue lines represent the noninteracting one-electron Green’s func-
tion and the red wavy lines represent the phonon propagators.

f f
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f f
d

f f
d

f f
d

FIG. 7. �Color online� The self-energy for the f quasiparticle
Green’s function corresponding to the series of emission and ab-
sorption of phonons propagating between two adjacent polaroni-
cally renormalized hybridization vertices. The symbols are the same
as in Fig. 6.
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The first term in the above expansion produces a highly
renormalized branch of quasiparticle excitations close to the
Fermi energy. However, at excitation energies greater than
��D from the Fermi surface, the quasiparticle excitations
becomes unrenormalized as can be inferred by expanding the
second and third terms in powers of �q�, yielding

� f�k,�� � �Ṽ�2� 1

�� − �k� + �
+

1

N
�
q� ,�

 �q,�

��q� ,�
�2

�� 1 + 2N��q,��
�� − �k�−q�

+ �
� +

1

N
�
q� ,�

 �q,�

��q� ,�
�2

���q,�� 1 − 2fk�−q�

��� − �k�−q�
+ ��2� + ¯� . �26�

For energies removed from the Fermi energy �so the denomi-
nators are far from resonance�, it can be inferred that the
second term represents the lowest-order term of the series
which has the effect of removing the polaronic reduction in
the square of the effective hybridization matrix elements

�V�2 � �V�2 exp�−
1

N
�
q� ,�

 �q� ,�

��q� ,�
�2

�1 + 2N��q� ,����
� �1 +

1

N
�
q� ,�

 �q� ,�

��q� ,�
�2

�1 + 2N��q� ,��� + ¯� .

�27�

This leads to the overall f density of states being unrenor-
malized by the electron-phonon coupling.

The low-energy contribution to the irreducible polariza-
tion part is given by the quasiparticle contribution shown in
Fig. 8, which has the leading-order contribution given by

�q�
��� =

2

N

 Ṽ�q� ,�

��q��

�2

�
k�
� �fk�

� − fk�+q�
� �sin2 �k� cos2 �k�+q�

�� + Ek�
� − Ek�+q�

�

+
�fk�

 − fk�+q�
 �cos2 �k� sin2 �k�+q�

�� + Ek�
 − Ek�+q�



+
�fk�

 − fk�+q�
� �cos2 �k� cos2 �k�+q�

�� + Ek�
 − Ek�+q�

�

+
�fk�

� − fk�+q�
 �sin2 �k� sin2 �k�+q�

�� + Ek�
� − Ek�+q�

 � �28�

in which all terms involve the polaronically renormalized

hybridization matrix element Ṽ. This has the same energetic
structure as that considered previously, although the intensi-
ties differ. The polaronically renormalized indirect gap is ex-
pected to decrease with increasing temperatures. Initially, it
is expected that this reduction will have the effect of produc-
ing an increase in the magnitude of the polarization part

�evaluated at the bare phonon frequency� as the temperature
increases. This results in an initial softening of the optic
phonon modes with increasing temperature, consistent with
the experimental findings of Manley et al.13 The polaronic
reduction in the indirect gap also yields the result that the
breathing modes only forms at sufficiently high tempera-
tures, at which the indirect gap becomes comparable to the
optic phonon energy. Furthermore, these breathing modes are
only expected to exist over a limited range of temperatures
since for sufficiently high temperatures the effective strength
of the electron-phonon coupling interaction given by

Ṽ�q� ,�

��q� ,�
�29�

will be reduced below the critical strength necessary to cause
the resonance to split the modes.

In summary, we have presented a model to describe the
phonon anomalies in �-uranium that is an alternative to the
intrinsically localized mode description. In particular, we
have shown that when the f-d electronic excitation energies
are comparable to the optic phonon frequencies, strong
f-electron-phonon coupling can cause the phonon frequen-
cies to soften and in a critical range may cause the phonon
modes to become resonant and split forming breathing
modes of mixed electron-phonon characters. These modes
will only occur for a limited range of q values and are re-
stricted to the higher energy portions of the unrenormalized
phonon spectra. Furthermore, we have indicated how the ob-
served temperature-dependent softening of the optic phonon
frequencies and the evolution of the new mode can be rec-
onciled with this theory, if one assumes the existence of a
significant polaronic renormalization of the quasiparticle ex-
citations.
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FIG. 8. �Color online� The lowest-order contribution to the pho-
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shown. The symbols are the same as in Fig. 6.
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